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Abstract

The Implicit Monte Carlo technique of Fleck and Cummings [1] is often employed to numer-
ically simulate radiative transfer. This method achieves greater stability than one with a fully
explicit time discretization by estimating the tn+1 value of T 4 from the thermal emission term,
which is proportional to T 4. In the Fleck and Cummings algorithm, this results in decreasing
the absorption by the so-called “Fleck factor”, and adding a corresponding amount of effective
scattering. We show how to include the effects of the temperature-dependent opacity to the esti-
mated tn+1 value of the thermal emission term. This results in the addition to the “Fleck factor”
of a term that depends on dσ

dT . We demonstrate that this modification allows for more accurate
solutions with much larger time steps for problems with opacities that have a strong temperature
dependence.

1. Introduction

The time-dependent transport equation for photons in the absence of scattering and external
sources is [2]

1
c
∂I(Ω, ν)
∂t

+ Ω · ∇I(Ω, ν) = −σ(ν,T )I(Ω, ν) + σ(ν,T )B(ν,T ) (1)

where c is the speed of light, σ is the macroscopic absorption cross section in inverse length
units. B(ν,T ) is the Planck function

B(ν,T ) =
2hν3

c2
1

exp( hν
kT ) − 1

(2)

where h is Planck’s constant and k is Boltzmann’s constant. (We are using exp to symbolize the
exponential function to avoid confusion with the symbols em and er, which are used in this work
to represent matter and radiation energy density.)

The thermal emission term, σB, can be written

σ(ν,T )B(ν,T ) =
1

4π
σ(ν,T )b(ν,T )
σP(T )

σPacT 4 (3)
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where a is the radiation constant, T is the matter temperature, b(ν,T ) is the Planck distribution
normalized over frequency, defined by

b(ν,T ) ≡ 15
4π

( hν
kT )3 h

kT

exp( hν
kT ) − 1

, (4)

and σP is the Planck mean opacity

σP(T ) =
∫ ∞

0
σ(ν,T )b(ν,T )dν. (5)

The expression σ(ν,T )b(ν,T )
σP(T ) is the probability distribution function for the frequency of the ther-

mally emitted photons.
The transport equation is coupled to the material energy balance equation [2]

∂em

∂t
= ρcv

∂T
∂t
=

∫

4π

∫ ∞

0
σ(ν,T )I(ν,Ω)dΩdν −

∫

4π

∫ ∞

0
σ(ν,T )B(ν)dΩdν. (6)

Here, em is the matter energy density in units of energy per volume, ρ is the mass density, and
cv is the specific heat capacity in units of energy per mass per temperature. (Henceforth, to sim-
plify notation, double integrals over the entire range of Ω and ν will be denoted with unadorned
integrals. That is, we will write ∫

4π

∫ ∞

0
f (Ω, ν)dΩdν (7)

as ∫
f (Ω, ν)dΩdν (8)

where it is not confusing to do so.)
These equations can be solved by a Monte Carlo method described in [3]. The method dis-

cretizes the problem on a mesh. Each zone has a temperature and an absorption cross section.
Particles representing photons are created in the zones at the beginning of each time step ac-
cording to the emission term in the transport equation. Then the photons are followed through
the zones, heating them according to the absorption term in Eq. (1). The zone temperatures are
updated at the end of the time step, using Eq. (6), and the process is repeated.

This method becomes unstable when time steps of the order of

∆t =
ρcv

aT 3cσP
(9)

are taken [1]. This instability occurs when the matter and radiation fields exchange an amount of
energy comparable to the amount of energy necessary to change the matter temperature a non-
negligible amount in one time step. If the matter is only able to absorb energy during a time step,
but is not able to re-radiate, as in the algorithm in [3], then instabilities may occur. The inability
of the matter to re-radiate the energy it absorbs from the radiation during a time step is caused
by the fact that the temperature in the emission term of the transport equation is calculated using
the temperature at the beginning of the time step.

A method for solving the photon transport equation with improved stability when large time
steps are taken was provided by Fleck and Cummings [1]. The method was dubbed Implicit
Monte Carlo, usually abbreviated IMC. IMC works by using the matter energy balance equation
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to estimate the tn+1 value of T 4 in the thermal emission term, Eq. (3). This estimate is substituted
into the thermal source term in the transport equation. This substitution has the effect of reducing
the absorption opacity in the transport equation by a factor of

f =
1

1 + βc∆tσP
(10)

and adding an equal amount of thermally redistributed isotropic scattering. Here β ≡ 4aT 3/ρcv.
This change allows the calculation to be run with much larger time steps before instabilities arise
[4]. The quantity f defined by Eq. (10) is sometimes referred to as the “Fleck factor”.

The factor f is small when photons are being absorbed and quickly re-emitted by the matter.
Problems in which this occurs are said to exhibit tight coupling between the radiation and matter.
IMC replaces the absorption and rapid reemission occurring in tightly coupled problems with
isotropic scattering. This scattering is usually referred to as the effective scattering, to distinguish
it from physical scattering. The effective scattering cross section σs = (1 − f )σP.

The enhanced stability of IMC makes it a practical method for radiation transport simulations.
It is often used in coupled radiation-hydrodynamics simulations, especially high energy density
applications like inertial confinement fusion simulations. An overview of the use of IMC in high
energy density simulations is provided in [5].

If the opacity is not a strong function of temperature, then using a tn+1 estimate of T 4 with
the tn value of σ is a good estimate of the tn+1 value of σB. It will be a poor estimate when the
temperature derivative of the opacity is a significant fraction of the temperature derivative for
σB. Since

dσB
dT
=

dσ
dT

aT 4b + σ
d(aT 4b)

dT
, (11)

we expect the estimate used in Fleck and Cummings IMC to be inaccurate when the second term
in Eq. (11) is large compared to the first. This will be true when

T
σ

∣∣∣∣∣
dσ
dT

∣∣∣∣∣ ≥ 4 (12)

When Eq. (12) holds, IMC may produce inaccurate results. A typical failure mode (which will
be demonstrated below) will occur when an initially cold material, with σ ∼ T−5 is subjected to a
thermal radiation source with a radiation temperature Tr large enough to change the temperature
significantly. Since IMC will use the large tn value of the opacity throughout the time step, the
matter temperature can increase to a value higher than the source radiation temperature in the
first time step. This is unphysical, because thermodynamic consistency requires T ≤ Tr. In sub-
sequent time steps, the opacity will be small, because the matter temperature is very large. This
reduces the value of σB in later time steps, so the matter does not radiate, and the unphysically
large temperature persists.

The following sections will describe this problem with IMC further, and develop a modifi-
cation of the IMC algorithm that reduces it for some simulations. In section 2, we describe a
semi-implicit discretization of the source terms in the transport equation and the matter energy
equation, including the temperature dependence of the opacity, and show that it results in a mod-
ification of the Fleck and Cummings algorithm. This modification introduces two new features.
The first is a new term in the “Fleck factor” that depends on the derivative of the opacity with
respect to temperature. The second is frequency and angle dependence added to the effective
scattering and the thermal emission term. In section 3, we develop an approximation to the new
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effective scattering that makes its use in Monte Carlo simulations more tractable. In section 4,
we apply this modified IMC method to two test problems with temperature dependent opacity.
We show that it can produce more accurate answers with much larger time steps than Fleck and
Cummings IMC on problems where the opacity has a strong temperature dependence.

2. Semi-Implicit Discretization Of The Transport And Matter Energy Equations

The system of Eqs. (1) and (6) is well-suited for solution by a Monte Carlo technique because
it is linear in I. The equations are not linear in T , however. This could be dealt with by using
some fixed values over each time step for T , σ, etc. on the right-hand side. The most obvious
values to use are the tn values. However, as mentioned above, [3] and [1] showed that this
method is unstable for large σ at relatively small values of ∆t. Equations which exhibit this
behavior are said to be stiff. A semi-implicit treatment of the source terms in stiff equations can
often allow numerical solutions with larger time steps (see, for example, [6]). Following an idea
first presented in [7], we will apply a semi-implicit discretization to the source terms of Eqs. (1)
and (6).

The semi-implicit discretization is a first order discretization that approximates the tn+1 values
of the sources by tn values plus derivatives of the source with respect to the independent variables
[6]. For example, a semi-implicit discretization of a system of non-linear differential equations
for yi

dyi

dt
= Fi(y) (13)

would be
yn+1

i − yn
i

∆t
= Fi(yn

i ) +
∑

j

∂Fi

∂y j
(yn+1

j − yn
j ), (14)

where the derivatives of Fi with respect to y j are evaluated at tn. We have also approximated the
time derivative of y with a finite difference.

Applying the semi-implicit discretization to the system of equations results in a linear equa-
tion for yn+1

i . The source term now depends on tn+1 values of yi, albeit using a linear approxima-
tion involving derivatives at tn. This linear dependence usually makes numerical solutions of Eq.
(14) more stable than explicit numerical solutions of Eq. (13), which use tn values for the source
Fi(y).

We would like to take advantage of the increased stability that the semi-implicit method
provides for the numerical solution of Eqs. (1) and (6). However, since we intend to solve Eq.
(1) by a Monte Carlo method, we will not discretize the time derivative of the radiation intensity
to produce a linear equation for In+1. This is because we can solve the linear differential equation
for I which results from the semi-implicit approximation by a Monte Carlo method. So our semi-
implicit approximation will involve expanding the source terms in Eqs. (1) and (6) in terms of
T n and derivatives with respect to T evaluated at tn, and keeping terms up to first order in the
differences.

For Eq. (1), this procedure results in

1
c
∂I
∂t
+ Ω · ∇I = −(σn +

∂σn

∂T
∆T )I

+ (σn +
∂σn

∂T
∆T )(Bn +

∂Bn

∂T
∆T ) (15)
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where ∆T = T n+1 − T n. Eq. (15) is to be regarded as a differential equation to be solved over
[tn, tn + ∆t].

Applying the procedure to Eq. (6) results in

∆em

∆t
= ρcn

v
∆T
∆t

=

∫
(σn +

∂σn

∂T
∆T )IdΩdν

−
∫

(σn +
∂σn

∂T
∆T )(Bn +

∂Bn

∂T
∆T )dΩdν . (16)

In Eq. (16), we have used the tn value of the heat capacity, cn
v . This does not require us to use

cn
v to obtain the tn+1 value of the matter energy density. That can be obtained by inverting the

equation of state once the emission and absorption have been calculated. The tn value of the heat
capacity is used only in calculating the tn derivatives used in the semi-implicit approximation.

Henceforth, where I multiplies a derivative with respect to T , we will use the tn value. We
will also use a prime to denote differentiation with respect to T evaluated at time n. For example,
B′ ≡ ∂Bn

∂T . This is done to simplify the notation.
In comparison to the development in [1], Eqs. (15) and (16) do not contain the “implicitness”

factor α. This factor was introduced in [1] to allow a semi-implicit extrapolation of the RHS
source terms in Eqs. (15) and (16) to a time between tn and tn+1. This was accomplished by
approximating the tn+1 value of a source term S n+1 via

S n+1 ≈ S n + α
∂S
∂T
∆T. (17)

This approximation extrapolates S to a time tn+αtn+1, with α usually limited to the range [0.5, 1]
for stability reasons [1] [4] [8]. Since standard practice in traditional IMC simulations is to
use α = 1, we have not introduced it in the development in this paper. It would be relatively
straightforward to do so by multiplying all of the extrapolated RHS derivative terms in Eqs. (15)
and (16) by α.

Solving Eq. (16) for ∆T results in

∆T =
∆t
ρcn

v

∫
σnIdΩdν −

∫
σnBndΩdν

(1 + ∆t
ρcn

v

∫
[σnB′ − σ′(In − Bn)]dΩdν)

(18)

Defining g via

g ≡ 1
1 + ∆t

ρcn
v

∫
[σnB′ − σ′(In − Bn)]dΩdν

, (19)

we can write Eq. (18) as

∆T =
∆t
ρcn

v

[∫
gσnIdΩdν −

∫
gσnBndΩdν

]
. (20)

The quantity g reduces to f defined by Eq. (10) if we ignore σ′ and B′, as the Fleck and
Cummings algorithm does, and will be seen to play a role analogous to that of f in the method
being derived.
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Using Eq. (20) in Eq. (15) and disregarding the term that is quadratic in ∆T results in

1
c
∂I
∂t
+ Ω · ∇I = −σnI + σnBn

− ∆t
ρcn

v

[
σnB′ − σ′(In − Bn)

]
[∫

gσnIdΩdν −
∫

gσnBndΩdν
]
. (21)

First we will examine the term on the right-hand side of Eq. (21) involving an integral over
the instantaneous value of the intensity, I. This term can be interpreted as a scattering term. We
would like to cast it in a form that involves a probability distribution function Ps(Ω, ν) times
a magnitude independent of these variables. To get the probability distribution function, we
normalize the function of Ω and ν. Making use of the fact that

∆t
ρcn

v

∫
[
σnB′ − σ′(In − Bn)

]
dΩdν =

1 − g
g
, (22)

we can write the term as
Ps(Ω, ν)

∆t
ρcn

v

∫
(1 − g)σnIdΩdν (23)

where
Ps(Ω, ν) ≡

σnB′ − σ′(In − Bn)∫
[σnB′ − σ′(In − Bn)]dΩdν

(24)

satisfies ∫
Ps(Ω, ν)dΩdν = 1. (25)

This allows us to identify (1 − g)σ as the effective scattering opacity, and Ps as the probability
distribution function for the scattered angle and frequency.

The remaining terms on the right-hand side of Eq. (21) represent thermal emission. As we did
with the scattering term, we would like to separate this expression into a probability distribution
function multiplied by a magnitude.

The thermal source term is

σnBn − ∆t
ρcn

v

[
σnB′ − σ′(In − Bn)

]
∫

gσnBndΩdν. (26)

We again normalize this function by integrating over Ω and ν. Using the fact that
∫
σnBndΩdν − ∆t

ρcn
v

[∫
[σnB′ − σ′(In − Bn)]dΩdν

] ∫
gσnBndΩdν = g

∫
σnBndΩdν (27)

we obtain the following expression for the thermal emission source:

Pt(Ω, ν)
∫

gσnBndΩdν. (28)

where

Pt(Ω, ν) ≡
σnBn − ∆t

ρcn
v
[σnB′ − σ′(In − Bn)]
∫

gσnBndΩdν
(29)
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Using the definition of the Planck opacity, Eq. (5), and Eq. (4), we can write the total emission
as gcσPa(T n)4.

Combining these expressions, we can write Eq. (21), the semi-implicit version of the trans-
port equation, as

1
c
∂I
∂t
+ Ω · ∇I(σ, ν) = σnIn+1

+ Pt(Ω, ν)gσPca(T n)4

+ Ps(Ω, ν)
∫

(1 − g)σnIdΩ′dν′ (30)

This equation may be compared to Eqs. (3.5) and (4.1a) in [1]. From this comparison, we see
that the quantity g acts in the same way as f in the Fleck and Cummings IMC algorithm: it
multiplies the absorption opacity and introduces an effective scattering.

The matter energy density can be updated by enforcing total energy conservation with Eq.
(30). This results in

∂em

∂t
=

∫
gσ(ν,T )I(ν,Ω)dΩdν −

∫
gσ(ν,T )B(ν)dΩdν (31)

This equation can also be derived by substituting the expression for ∆T , Eq. (20), into Eq. (16).

3. Approximations to g, Ps, and Pt useful for numerical work.

Eqs. (30) and (31) can be solved by the same numerical techniques used to solve the cor-
responding equations in [1]. However, the modified equations present two complications with
respect to the original equations.

First, the emission and scattering probability distribution functions defined in Eq. (24) and
Eq. (29) are functions of angle as well as frequency. In Fleck and Cummings IMC, probability
distribution functions for both effective scattering and thermal emission are angle-independent
and Planckian. That is, both are represented by the Planck function, Eq. (4).

The second complication is that we cannot ensure that g, defined by Eq. (19), satisfies g > 0,
while the “Fleck factor”, defined by Eq. (10), is manifestly positive.

We will now discuss approximations for Eq. (24), Eq. (29) and Eq. (19) that mitigate these
problems.

The angle dependence of Eqs. (24) and (29) results from the time n value of the radiation
intensity, because quantities such as B and σ are independent of angle. We could use tallies of
the radiation intensity in the previous time step to give us a value for I(Ω, ν) at time n. However,
this would result in either values for the radiation intensity in a finite number of angle and energy
bins, or some kind of functional representation of I in Ω and ν. Either would be subject to
statistical noise.

The frequency dependence of the thermal source term is σnBn plus a correction factor in-
volving σ′ multiplied by In − Bn. This term approximates the change in the emitted frequency
due to the change in opacity over the time step. In the Fleck and Cummings algorithm, changes
in the frequency of thermal emission over the time step are ignored. This approximation occurs
in Eqs(3.4a-b) in [1], when the change in thermal emission over a time step is approximated by
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the change in radiation temperature over the time step. In effect,

dB
dT

=
d(aT 4b)

dT

≈ d(aT 4)
dT

b

= 4aT 3b; (32)

or, equivalently, db
dT ≈ 0.

We do not want to calculate the angular dependence in Pt(Ω, ν) as defined in Eq. (29) because
of its susceptibility to statistical noise. We also note that the Fleck and Cummings algorithm is
successful while employing the approximation in Eq. (32). For these two reasons we will use an
approximation that is independent of angle:

Pt(ν) ≈
σn(T n)B(ν,T n)∫ ∞

0 σ
n(T n)B(ν,T n)dν

. (33)

This is the same probability distribution function used in Fleck and Cummings.
Now we will turn to the probability distribution function for scattering, Ps(Ω, ν) as defined in

Eq. (24). The first term in the numerator of Eq. (24) isσnB′. Using Eq. (32), we can approximate
this as σn4aT 3b(ν,T ). Ignoring the angular dependence and normalizing this expression gives

Ps(Ω, ν) ≈
σnB(ν,T n)∫ ∞

0 σ
nB(ν,T n)dν

, (34)

which is the same probability distribution function used in Fleck and Cummings, and the same
one we are employing for thermal emission.

Finally, we will turn to the expression for g, Eq. (19). This quantity reduces the thermal
emission and replaces it with effective scattering, just as the quantity f does in [1]. The integral
term in the denominator of the definition of g,

∆t
ρcn

v

∫
σnB′ − σ′(In − Bn)dΩdν, (35)

will contains two terms, one in B′ and one in σ′. Using Eq. (32), we can approximate the B′
term, which lets us write

∆t
ρcn

v

∫
σnB′dΩdν ≈ ∆t

ρcn
v

4aT 3c
∫
σnbdν

≈ 4aT 3

ρcn
v
σP∆t. (36)

Defining

β ≡ 4aT 3

ρcn
v

(37)

as in [1], we see we can approximate the first term in the denominator as βcσP∆t, which is the
same quantity that appears in the denominator of the “Fleck factor” f of Eq. (10). If we assume
that σ′ = 0, then g = f
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The σ′ term in Eq. (19) has the effect of increasing the effective scattering when the opacity
decreases as a function of time and the material is going to absorb energy from the radiation and
increase in temperature. If σ′ < 0, which is usually the case, and In > Bn, then −σ′(In − Bn) > 0,
and g < f . This decreases the absorption and increases the effective scattering relative to the
Fleck and Cummings method. If the material is going to heat up during the time step, and its
opacity decreases with T , it should not absorb as much energy as if the opacity is constant. Thus,
this behavior is physically reasonable and we can conjecture that problems in which a material
with variable opacity is heated by radiation will show less unphysical overheating than we find
with Fleck and Cummings IMC. In the next section, we will see that that is indeed the case.

The term ∫
σ′(In − Bn)dΩdν (38)

is a weighted approximation to σ′. Rather than use a tally over In to calculate it, we make the
approximation

In ≈ caT 4
r b(ν,T n)
4π

(39)

where the radiation temperature is defined via

Tr ≡
1
c

∫
IndΩdν. (40)

Note that we are using Eq. (39) only in the calculation of g. This value for In allows us to make
the following approximation:

∫
σ′InBn dΩdν ≈ cσ′P(aT 4

r − aT 4) . (41)

Here we have also assumed db
dT ≈ 0 in the derivative of the Planck opacity, as in Eq. (32).

These (admittedly severe) approximations allow us to use the following definition for the
modified “Fleck factor” g:

g =
1

1 + βcσP∆t − cσ′P(aT 4
r − aT 4) ∆t

ρcn
v

(42)

As noted, we can have g < 0 if σ′P(aT 4
r − aT 4) is sufficiently large and positive, resulting

in a negative absorption opacity. While difficult to simulate, this is not actually unphysical.
If we had σ′P < 0 and T > Tr, then energy should be transferred from the material to the
radiation field. A negative absorption would do this by having photons increase in energy as
they propagated, taking the energy from the material and lowering its temperature. In effect, the
photons deposit a negative energy into the material. This is the physically correct direction for
energy flow. However, the absorption opacity appears in an exponential when calculating energy
deposition. Using a negative absorption opacity causes a large risk of an overflow or a negative
matter temperature. So in practice, we have used the following expression for g:

g =
1

1 + βcσP∆t −min[σ′P(aT 4
r − aT 4) c∆t

ρcn
v
, 0]

(43)

This form for g ensures that we will always have g ≥ f , so we will always have more
effective scattering and hence a lower effective absorption when g replaces f . There are cases
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where increasing the effective absorption would actually be physically reasonable. For example,
if σ′p < 0 and T > Tr, then increasing the absorption would bring the matter and radiation in
the simulation into equilibrium more rapidly. In this case, the extra term in Eq. (43) would be
positive, would result in g < f , and would increase the effective absorption. However, we prefer
to define g such that g ≥ f for the following reason. In radiation-hydrodynamics simulations,
zones which become unphysically hot when Tr > T can cause spurious features such as shocks
to form if they rapidly increase in temperature. Zones with T > Tr and which cool too slowly
are unlikely to cause shocks to form. Although allowing g < f might address accuracy issues in
those zones, we prefer to use the more stringent limit embodied in Eq. (43) and maintain g ≥ f
at all times.

Eqs. (30) and (31), with g defined by Eq. (43), Ps defined by Eq. (24) and Pt defined by Eq.
(29), are a set of equations that can be solved by the same techniques as those employed to solve
the equations of [1]. If we assume σ′ = 0, g = f and we recover the results of [1].

When the opacity σ has a simple analytic form, σ′P can be calculated directly. For compli-
cated forms, or for tabular data, σ′P can be approximated with a difference form. For example,

σ′P ≈
σP(ρn, 1.001T n) − σP(ρn,T n)

0.001T n (44)

This approximation was used for the second test problem in the next section, which employed a
tabular multigroup opacity.

Now that we have defined the new method, it is useful to compare it with several other
recent attempts to modify IMC. The algorithm described in this paper (henceforth referred to as
“Modified IMC”) attempts to improve the accuracy of a Monte Carlo simulation by improving
the accuracy of the value of the opacity used in the time step. It does this by using information
about the derivative of the opacity at the beginning of the time step. Cheatham [9] also describes a
modified IMC algorithm that attempts to get a more accurate value of the opacity. That algorithm
does this by a predictor-corrector methodology. An IMC simulation is run to get an estimate of
the future matter temperature T (tn+1). This is the predictor step. The estimate of T (tn+1) is
then used to get an updated value of the opacity for another IMC simulation, the corrector step,
the results of which are used as the final tn+1 values. Compared to Modified IMC, Cheatham’s
method has the advantage of getting an estimate of the opacity using a calculation of the tn+1

temperature, which presumably makes it more accurate than an extrapolation based on the tn

derivative. However, it has the drawback that two IMC simulations must be run for each time
step.

The Modified IMC method attempts to reduce overshoots in T by reducing the effective
absorption by replacing the standard “Fleck factor” f with a function that is smaller. It shares
this characteristic with the method described by McClarren and Urbatsch [10]. In this work, the
authors solve linearized versions of Eqs. (1) and (6) using an integrating factor rather than by
assuming that the emission and absorption are constant during the time step. This results in the
replacement of f by a factor

m∞ ≡ exp[−βσPc∆t], (45)

where all values are tn values. Using this quantity rather than f in a Monte Carlo simulation can
reduce overheating. However, it can lead to values of effective absorption that are too low. In
this case, zone temperatures change at an unphysically slow rate. In this case, m∞ is replaced by
an expansion of the exponential, with the order of the expansion determined by a function of T
and Tr (see [10] for details).
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In [11], Wollaber replaces f with a time-dependent factor, obtained by applying an inte-
grating factor to linearized versions of Eqs. (1) and (6). This is done to improve the temporal
accuracy of the IMC method to second order when ∆t is small. This change leaves large time
step behavior, such as overheating, largely unchanged.

The methods described in [9], [10], and [11] all use linearized versions of the transport and
matter energy equations that use the approximation Eq. (32) to approximate the thermal source
term. This approximation ignores σ′P. The linearized equations used in these methods could
be replaced by Eqs. (15) and (16). This would introduce terms containing σP

dT
n, resulting in a

combination of the Modified IMC method and the methods of [9], [10], and [11]. Combining the
different methods is beyond the scope of this paper.

4. Numerical Results

In this section, we will show numerical results for two test problems using both the original
Fleck and Cummings algorithm, and the modified IMC algorithm where f is replaced by g.
These simulations were performed using the IMC package in the Kull code [12].

The first test is an infinite medium problem, similar to that described in [13], but with a
temperature-dependent opacity. The matter has an absorption opacity of the form σ(T ) =
σ0T−5 and a constant heat capacity. We use the values σ0 = 10−3 cm−1 keV−5 and cv =
5 × 1014 erg/(g keV). We take the initial values T = 0.01 keV, and Tr = 1.46512 keV. These
values will lead to a final equilibrium temperature of T = 1.0 keV after about 2 × 10−8 sec. The
density is constant at 1.0 g/cm−3 This problem, like the one presented in [13], has a semi-analytic
solution. The test problem and its solution are described in more detail in the appendix.

The test problem begins with Tr > T . The opacity has an initial value of 107 cm−1. This
very large value will cause a large amount of energy to be absorbed, unless the time step is very
small. The heat capacity is low, relative to aT 3, so the matter temperature will increase by a large
amount compared to the radiation temperature when energy is absorbed. Because σ is large and
cv is small, we would expect IMC simulations of this problem to demonstrate overheating unless
the time step used is very small compared to the equilibration time.

We will present results for this test problem using both the standard Fleck and Cummings
IMC algorithm and the modified IMC algorithm. The Fleck and Cummings IMC algorithm will
be seen to overshoot unless very small time steps are taken, while the modified IMC algorithm
will not, even when very large values of ∆t are used.

Fleck and Cummings IMC results are displayed in Fig. 1. This plot shows matter and radia-
tion temperature vs time for IMC simulations with constant ∆t, for ∆t varying between 10−21 and
10−9 sec. Matter temperature T is plotted in red, and radiation temperature Tr in blue. Each IMC
simulation is represented by a pair of lines, one red and one blue. The lines for each simulation
begin at a time equal to the value of ∆t used in the simulation. That is, the first point plotted for
any simulation is the value at the end of the first time step; the t = 0 initial conditions are not
plotted. Some simulations with very small time steps were not run to completion, because they
would have taken a prohibitive amount of computer time. This is why the red and blue lines that
begin at t = 10−18 and t = 10−17 end at t = 10−14. The analytic answer for both T and Tr is in
black.

The results of the IMC simulations in Fig. 1 depend very strongly on the value of ∆t. The
initial conditions of the simulation have Tr(t = 0) > T (t = 0), and we should have Tr ≥ T at all
subsequent times [4] [8]. We find that IMC simulations must have a very small ∆t to satisfy this
requirement.
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First, let us examine the results for ∆t = 10−20 sec. These are represented by the red and blue
lines beginning at t = 10−20 sec. We see that the value of T after the end of the first time step
obtained in this simulation is slightly greater than the analytic value, and the value of Tr in the
first time step is slightly lower than the analytic value. In subsequent time steps, the results of the
IMC simulation move towards the analytic results, so that by t = 10−19 sec the simulation results
are indistinguishable from the analytic answer.

For ∆t = 10−19 sec, T is larger than the semi-analytic answer, but remains lower than Tr,
after the first time step. The large T obtained after the first time step leads to a small absorption
opacity, so T remains almost constant after the first time step, until it eventually approaches the
semi-analytic answer after t = 10−16 sec. For ∆t = 10−18 sec, T increases by a larger amount,
reaching a value of 0.34 keV, and remaining constant after that. This is still less than the value
of Tr for this simulation, which is 1.36 keV. For ∆t = 10−17 sec, T reaches a value of 1.21 keV,
greater than the value of Tr, which is 0.69 keV. This is a violation of thermodynamic consistency.
For this simulation, the red line representing matter temperature is above the associated blue line
representing the radiation temperature. As with the simulations using ∆t = 10−19 sec, ∆t = 10−18

sec, and ∆t = 10−17 sec, the erroneously large value of T remains constant in time because of the
low value of σ that occurs when the temperature is large.

For all simulations with values of ∆t > 10−17 sec, essentially all the radiation energy is
absorbed by the material in the first time step. The matter temperature jumps to a value of
1.21 keV after one time step. This is the value of T obtained when all of the energy in the
problem is in matter internal energy, there is no radiation energy, and the radiation temperature
drops to essentially zero. For these simulations, the blue lines representing radiation temperature
begin near zero, and slowly rise up toward the analytic solution as the simulation progresses.
The red lines representing matter temperature are all near 1.21 keV, and remain there until the
simulations reach equilibrium. In these simulations, equilibrium is reached later than it is in the
analytic answer.

(For the run with ∆t = 10−17 sec, Tr has a value of 1.1 keV after the first time step. Tr then
drops to the value of 0.69 keV. The reason for this is due to the method of calculating Tr. Tr
is calculated from an average of er over every path, rather than summing the energy of every
photon that reaches census. This has the effect of time centering Tr in the middle of the time
step, rather than the end. So in the first time step, Tr takes a value, 1.1 keV, intermediate between
the initial value of 1.46512 keV and the final value of 0.69 keV. The sum of the energy density
of the census photons after 1 time step has a value which satisfies (er(∆t)/a)0.25 = 0.69 keV. So
the value of 1.1 keV after 1 time step is a transient artifact, rather than a physical effect.)

Fig. 1 may be compared to Fig. 4 of [8]. That figure shows damped oscillatory behavior
in an IMC simulation of an infinite medium test problem with constant opacity. This oscillatory
behavior occurs for the same reason that overshooting of the analytic temperature occurs for
larger time steps in Fig. 1. Initially, Tr(t = 0) > T (t = 0). The test problem has a large value of
σ and a “Fleck factor” satisfying f ≈ 1, leading to almost complete absorption of the radiation
by the matter in the first time step. This causes the value of Tr in the next time step to fall to a
small value, and the matter temperature to rise to a large value, such that Tr(t = ∆t) < T (t = ∆t).
On the second time step, the large value of T causes a large amount of thermal emission, leading
to Tr(t = 2∆t) > T (t = 2∆t). The test problem shown in Fig. 1 behaves in a similar manner in
the first time step. It does not exhibit oscillatory behavior in subsequent time steps because the
temperature-dependent opacity drops to a very small value when T (t = ∆t) becomes large. Since
σPT 4(t = ∆t) is small, there is very little thermal emission, and T remains at the large value of
T (t = ∆t).
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Figure 1: Fleck and Cummings IMC results for several different values of ∆t for the σ ∼ T−5 test problem described in
the appendix. Matter and radiation temperature are plotted vs. time. Matter temperature is denoted by Tm and radiation
temperature by Tr .

Results using the Modified IMC algorithm are displayed in Figure 2. The results are similar
for all values of ∆t. In all cases, T remains below both Tr and the semi-analytic value. The
modified IMC algorithm does not overshoot, even for values of ∆t more than 10 orders of mag-
nitude larger than the value of ∆t for which Fleck and Cummings IMC overshoots. Even for
∆t = 10−7 sec, which is a significant fraction of the equilibration time of ∼ 2 × 10−8 sec, the
modified IMC algorithm keeps T < Tr, and reaches the correct asymptotic value (T = Tr = 1.0
keV) at approximately the correct time.

The reason for the difference in behavior of the two methods is shown in Table 1. The
“Fleck factor” f ≈ 1 even for the smallest value of ∆t used, so the amount of effective scattering
introduced by the IMC algorithm is insignificant. The absorption opacity f × σ(T0) ≈ σ(T0) =
107 cm−1. Since the absorption opacity is very large, a significant fraction of the radiation energy
is absorbed by the matter, and the temperature increases. For ∆t > 10−17 sec, almost all the
radiation energy is absorbed by the matter in one time step, which causes Tr to drop to a very
low value. Since the opacity is very low for large T , the hot matter radiates very little energy,
and T remains large.

In contrast, the modified “Fleck factor” g has a small value, even for very large ∆t. The
amount of effective scattering is very large, and the effective absorption opacity is very small.
So the amount of energy absorbed from the radiation by the matter is much smaller than that
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Figure 2: Modified IMC results for several different values of ∆t for the σ ∼ T−5 test problem described in the appendix.
Matter and radiation temperature are plotted vs. time. Matter temperature is denoted by Tm and radiation temperature by
Tr .

absorbed during Fleck and Cummings IMC simulation. The matter temperature remains low,
the opacity remains high, and T slowly increases to the value obtained from the semi-analytic
solution.

Since the effective scattering is very large in the modified IMC algorithm, particles will have
a very small mean free path, and simulations can take a long time. In these calculations, we have
used the “random walk” algorithm described in [14]. This speeds up the calculation significantly
by using a solution of the diffusion equation to move particles to positions that represent the
effects of many scatters. As a result of employing the “random walk” algorithm in simulations
using the modified IMC algorithm, all simulation of the first test problem described here took on
the order of a few minutes using one Intel processor running the Linux operating system.

This test problem can also be simulated with diffusion. Since the problem has no spatial
variation, the differences in the spatial discretization of diffusion and Monte Carlo will not affect
the answer. This allows us to use the diffusion simulation to examine the behavior of a different
temporal discretization than the one used in either Monte Carlo algorithm. The diffusion sim-
ulation used the flux-limited diffusion package of the Kull code [12]. This package iterates on
the matter temperature used in the thermal emission source term of the transport equation, but
uses a value of the opacity at the beginning of the time step. In effect, the diffusion temporal
discretization uses the tn+1 value of the matter temperature but the tn value of the opacity.
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Table 1: Values of opacity, f and g with T = 0.01 keV and Tr = 1.46512 keV for values of ∆t used in the first test problem.
∆t (sec) f (T ) g(T,Tr)
10−19 1.000000000000 1
10−18 1.000000000000 0.999998
10−17 1.000000000000 0.999981
10−16 1.000000000000 0.999811
10−13 0.999999999671 0.840671
10−11 0.999999967095 0.0501186
10−9 0.999996709468 0.000527352

The results of simulations using the diffusion algorithm are displayed in Figure 3. Various
values of ∆t from 10−19 to 10−13 seconds were used. For ∆t = 10−19 sec, T jumps from the initial
value of 0.01 keV to 0.05 keV. This reduces the opacity to a smaller value, reducing absorption
by the matter, and the solution remains constant, until it begins to approach the analytic answer
at around t = 5 × 10−15 sec. When ∆t is increased to 10−18 sec, T jumps to the higher value of
∼ 0.3keV. For ∆t = 10−16 sec, the solution jumps to a value of T slightly lower than 1.0 keV,
and a value of Tr that is slightly less. For ∆t = 10−15 sec, the solution jumps to the equilibrium
value, T = Tr = 1.0 keV, remaining constant thereafter. (The number of time steps was limited
to 5000, which is why the lines in Figure 3 end.)

The behavior of the diffusion simulations show some similarities to the behavior of the Fleck
and Cummings IMC solution. Unless a very small time step is used, the simulation results in
matter temperature that is too large and a radiation temperature that is too small. Unless ∆t is less
than about 10−16 sec, the diffusion simulation jumps immediately to the equilibrium temperature.

The behavior of the diffusion algorithm is more accurate than that of IMC for large time steps,
because the diffusion solution remains thermodynamically consistent, with Tr > T , while IMC
produces results with T > Tr. This occurs because the diffusion simulation iterates on the matter
temperature used for thermal emission. This iterative procedure means that emission in time
step n is proportional to T 4 at tn+1, rather than the estimate f T 4 at tn that IMC uses. However,
the diffusion simulation still uses σ at tn to calculate thermal emission. In effect, the diffusion
simulation is implicit in temperature, but explicit in opacity.

The Modified IMC algorithm produces more accurate answers for this test problem than
diffusion, even with much larger ∆t. For this test problem, with an opacity that has a strong
temperature dependence, a more accurate answer is obtained by an algorithm that is semi-implicit
in both T and σ than by an algorithm that is fully implicit in T but explicit in σ.

The second test problem is a coupled radiation-hydrodynamics test problem with tabular
multigroup opacities and a tabular equation of state. The problem consists of a slab of silicon
dioxide with a density of 0.01 g cm−3 and a slab of plastic doped with bromine with a density of
0.5 g cm−3. Both materials have a temperature of 0.025 keV. The plastic occupies x = [0, 5 cm]
and the silicon dioxide occupies x = [5, 10 cm]. A radiation source characterized by temperature
of 1 keV is applied to the face at x = 10 cm.

The mesh for the problem uses 200 equal zones. The opacities of both materials were mod-
eled with 14 groups with boundary values of [0.0001, 0.01, 0.05, 0.25, 0.5, 0.75, 1.0, 1.25, 2.0,
5.0, 10.0, 15.0, 20.0, 25.0, 30.0] keV.

The temperature source applied to the silicon dioxide drives a Marshak wave through it and
into the plastic. As with the infinite medium test problem described above, we can get overheat-
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Figure 3: Diffusion results for 5 different values of ∆t for the σ ∼ T−5 test problem described in the appendix. Matter
and radiation temperature are plotted vs. time. Matter temperature is denoted by Tm and radiation temperature by Tr .

ing in the material when Tr > T . Because the problem uses multigroup opacities, high frequency
photons see a lower opacity and have a larger mean free path than low frequency photons. These
high frequency photons can penetrate into the material ahead of the Marshak wave and raise the
radiation temperature there. Since g can be lower than f when Tr > T because of the last term
in the denominator in Eq. (43), we expect that problems with overheating might be reduced by
the modified IMC algorithm. This proves to be the case.

Figure 4 shows results for this test problem using both Fleck and Cummings IMC and the
Modified IMC method at a simulation time of 1.0 × 10−7 sec. Both simulations used the same
value of ∆t = 1.0 × 10−11 sec. At the plotted time, the Marshak wave has proceeded through the
silicon dioxide and is entering the plastic. Multigroup effects cause the radiation temperature in
the plastic to be higher than the material temperature in the plastic.

The Fleck and Cummings IMC simulation clearly shows unphysical overheating near the
temperature source at x = 10 cm. The material near the source should be at a temperature slightly
lower than the source temperature, 1 keV, but has reached a temperature of almost 10 keV. Some
regions of material further from the source have T > 1 keV as well.

In contrast, the modified IMC method has T < 1 keV everywhere; there is no sign of over-
heating. In the silicon dioxide, T is smooth, and everywhere is slightly lower than Tr, which has
a value approximately the same as the source temperature, 1 keV.

Lowering the value of ∆t used in the Fleck and Cummings IMC simulation eliminates the
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Figure 4: Fleck and Cummings IMC and modified IMC results for the radiation-hydrodynamics test problem. Matter
and radiation temperature are plotted vs. space at t = 1.0 × 10−7 sec. Both simulations used ∆t = 10−11 sec. Te denotes
electron temperature and Tr denotes radiation temperature.

overheating observed in Figure 4. Experimentation shows that the spike in the temperature of
the silicon dioxide near the source is eliminated when ∆t = 1.25 × 10−12 sec is used. With this
value of ∆t, Fleck and Cummings IMC gets results similar to those obtained by the modified
IMC method with ∆t = 10−11 sec. Figure 5 compares the Fleck and Cummings IMC simulation
using ∆t = 1.25× 10−12 sec to the modified IMC simulation using ∆t = 10−11 sec. The enhanced
stability of the modified IMC method on this test problem is demonstrated by the fact that it
produces results with no overheating with a value of ∆t that is 8 times larger than that needed by
Fleck and Cummings IMC.

(The larger ∆t used in the modified IMC method is the reason that it produces smoother
results for T and Tr in Fig. 5 in the cold region ahead of the Marshak wave. Cold regions
typically have fewer particles because the number of thermally emitted particles is proportional to
T 4. When ∆t is larger, more particles can travel between zones. This means that the temperature
of the zone is calculated with better statistics, and is hence smoother.)

The reason that the anomalous high matter temperatures seen by the Fleck and Cummings
IMC simulations in Figure 4 persist is shown in Figure 6. This plot depicts the Planck opacity for
the two simulations depicted in Figure 4. The unphysically hot regions of silicon dioxide have
a very low σP, reducing the rate of thermal emission. The unphysically hot material does not
cool as a result. This behavior is similar to that observed in simulations in Figure 1 when larger
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Figure 5: Fleck and Cummings IMC and Modified IMC results for the radiation-hydrodynamics test problem. Matter and
radiation temperature are plotted vs. space at t = 1.0 × 10−7 sec. Fleck and Cummings IMC used ∆t = 1.25 × 10−12 sec.
The modified IMC method used ∆t = 10−11 sec. Te denotes electron temperature and Tr denotes radiation temperature.

values of ∆t are used.
Figure 7 shows the values of f and g for the Fleck and Cummings IMC and modified IMC

simulations of the radiation hydrodynamics test problem. Both simulations used ∆t = 10−11 sec.
The higher radiation temperature in front of the Marshak wave causes g < f . The value of g
reaches a low of 0.1 at the front of the Marshak wave in the plastic, while the lowest value of f is
0.5. The absorption opacity is proportional to f in Fleck and Cummings IMC and g in modified
IMC. So the particles in the modified IMC simulation are losing energy to the matter at a rate
that is 5 times lower than that of the Fleck and Cummings IMC simulation. This lowered rate
of coupling between the matter and radiation reduces the production of unphysically high matter
temperatures.

5. Conclusions

We develop a modification of the “Fleck factor” in the IMC radiation transport method. This
modification is developed by a semi-implicit temporal discretization of the thermal emission term
in the transport equation. It takes into account the change in the opacity with temperature during
a time step, and is sensitive to the difference between radiation and matter temperature. It has
the effect of increasing the amount of effective scattering, and thus decreasing the absorption,
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Figure 6: Opacity vs. space at t = 1.0 × 10−7 sec. for Fleck and Cummings IMC and modified IMC simulations of the
radiation-hydrodynamics test problem. Both simulations used ∆t = 10−11 sec.

for simulations with temperature-dependent opacities where the radiation temperature is greater
than the matter temperature. The lower amount of absorption reduces the tendency for IMC
simulations to produce unphysically large matter temperatures in some simulations.

6. Appendix: semi-analytic solution of infinite medium test problem with temperature-
dependent gray opacity.

Here we present a semi-analytic solution of an infinite medium test problem with temperature-
dependent gray opacity. This test problem is very similar to the constant opacity test problem
presented in [13], and the solution technique is essentially the same as the one described there.
This version of the test problem with a temperature-dependent opacity was first described in [7].

The test problem has a constant density ρ, a constant heat capacity cv, and an absorption
opacity σ(T ) = σ0T−n, with n a non-negative integer. The test problem has no radiation source.
The solution of the test problem is obtained by solving Eqs. (1) and (6) with these assumptions.

The assumption of constant cv allows us to replace em with temperature via the equation of
state em = ρcvT . The fact that there are no sources in the problem means that the total energy
et ≡ er+em is a constant, determined by the initial radiation and matter temperatures. This allows
us to eliminate the radiation energy density er in terms of et and T via er(t) = et − ρcvT (t). Eqs.
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Figure 7: Values of f and g vs space for the Fleck and Cummings IMC and modified IMC simulations of the radiation
hydrodynamics test problem. Both simulations used ∆t = 10−11 sec.

(1) and (6) can then be combined into the single equation

dT
dt
=

cσ0T−n

ρcv

[
aT 4 + ρcvT − et

]
. (46)

This equation can be cast into an integral equation for t(T ):

caσ0

ρcv
(t − t0) =

∫ T

T0

T ndT
T 4 + pT − q

, (47)

where T0 ≡ T (t0), p ≡ (ρcv)/a and q ≡ et/a.
As shown in [13], the roots of the denominator of Eq. (47) can be obtained. The denominator

is a quartic, and so there will be 4 roots. Since n is a non-negative integer, knowing the roots of
the denominator allows us to decompose the integrand by partial fractions [15]. This will let us
express the integrand as a sum of a polynomial in T and four terms of the form ci

T−Ti
, where ci

is a constant and Ti are the four roots of the denominator. The form of the polynomial and the
values of the ci will depend on the initial temperatures and the values of the constants, such as cv
and σ0.

We will examine the specific case where n = 5, so that the opacity has a particularly strong
temperature dependence: σ(t) = σ0T−5. We will take σ0 = 10−3 cm−1 keV−5. We will set cv =
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Table 2: Roots and coefficients for Eq. (48)
root value (keV) coefficient value (keV2)
T1 0.417340 + 1.535317 i c1 -0.558980 + 0.487657 i
T2 0.417340 - 1.535317 i c2 -0.558980 - 0.487657 i
T3 1.0 c3 0.130817
T4 -1.834681 c4 0.987142

5 × 1014 erg/(g keV). The density ρ will set equal to 1.0 g/cm−3. In cgs units, c = 2.9979 × 1010

cm/s and the radiation constant a = 1.37202 × 1014 erg(cm3 keV4). The initial temperature will
be T0 = 0.01 keV, and the initial radiation temperature will be 1.46512 keV. These values will
lead to a final equilibrium temperature of T = 1.0 keV. We will take t0 = 0.

With n = 5 and the values for cv, etc. given above, the integrand of Eq. (47) becomes, via
partial fractions,

T 5

T 4 + pT − q
= T +

−pT 2 + qT
T 4 + pT − q

= T +
4∑

i=1

ci

T − Ti
, (48)

where

ci =
pT 2

i + qTi

4T 3
i + p

(49)

as shown in [15]. The values of Ti and ci are given in Table 2. The roots T1 and T2 are complex
conjugates, as are the constants c1 and c2. This holds because the integral must give a real value
for the temperature. T3 is the equilibrium temperature, 1.0 keV.

Since the first 2 roots are complex conjugates, we can combine them into a manifestly real
expression:

c1

T − T1
+

c∗1
T − T ∗1

=
(c1 + c∗1)T − (c1T1 + c∗1T ∗1 )

T 2 − (T1 + T ∗1 ) + T1T ∗1
. (50)

Using Eqs. (48) and (50), the integral in Eq. (47) is reduced to a sum of integrals of simple
expressions for which analytic expressions can be found (see, for example [15]). These are the
same forms found for the integrals in [13] with different constant coefficients. The result of the
integration is

t(T ) =
ρcv

caσ0

[
2B − AC√

Q
arctan

(
2T +C√

Q

)

+
A
2

log(T 2 +CT + D)

+c3 log(T − T3) + c4 log(T − T4)
]T

T0

. (51)

The values of the constants A, B, etc. can be found in Table 3. This expression for t(T ) can
be inverted by any of the standard root-finding techniques (see, e.g., [6]) to calculate values
of T given the time t. The specific values of the constants in Eq. (51) are given in Table 2.
Once the value of T (t) is obtained, the value of radiation temperature can be found from energy
conservation.

The solution, T (t) is plotted in Figure 8. This figure shows that the temperature rises very
rapidly are early times, because the opacity at the initial temperature is very large. Because
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Table 3: Roots and coefficients for Eq. (51)
coefficient expression value
A c1 + c∗1 -1.117960
B −(c1T1 + c∗1T ∗i ) -1.963987
C −(T1 + T ∗1 ) -0.834681
D T1T ∗1 2.531373
Q 4D −C2 9.428800

the opacity is such a strong function of temperature, it decreases as the matter is heated by the
ambient radiation, so the rate of change of the temperature declines as the temperature increases.

Figure 8: Semi-analytic answer for the σ ∼ T−5 test problem, calculated by inverting Eq. (51). Matter and radiation
temperature are plotted vs. time. The temperature is in units of keV.
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